Affiliation:
1. Department of Pediatrics, University of Chicago, Illinois 60637, USA. sboyleva@midway.uchicago.edu
Abstract
The mechanism of low-level glycopeptide resistance among staphylococci is not known. A cytoplasmic protein, provisionally called Ddh (W. M. Milewski, S. Boyle-Vavra, B. Moreira, C. C. Ebert, and R. S. Daum, Antimicrob. Agents Chemother. 40:166-172, 1996), and the RNA transcript that contains the ddh gene, which encodes Ddh, are present in increased amounts in a vancomycin-resistant isolate, 523k, compared with the susceptible parent isolate, 523. Sequence analysis had previously revealed that Ddh is related to NAD+-dependent D-lactate dehydrogenase (D-nLDH) and VanH. This latter protein is essential for high-level glycopeptide resistance in Enterococcus faecium and Enterococcus faecalis by synthesizing the D-lactate needed for biosynthesis of D-lactate-terminating peptidoglycan precursors with low affinity for vancomycin. We now provide the direct evidence that the ddh gene product is Staphylococcus aureus D-nLDH and hereafter refer to the protein as D-nLDH. However, overproduction of this protein in isolate 523k did not result in production of D-lactate-containing peptidoglycan precursors, and susceptibility testing of ddh mutants of 523k demonstrated that S. aureus D-nLDH is not necessary for glycopeptide resistance in this isolate. We conclude that the mechanism of glycopeptide resistance in this isolate is distinct from that in enterococci.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献