Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis

Author:

Wylie J L1,Hatch G M1,McClarty G1

Affiliation:

1. Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.

Abstract

There is little information on the trafficking of eukaryotic lipids from a host cell to either the cytoplasmic membrane of or the vacuolar membrane surrounding intracellular pathogens. Purified Chlamydia trachomatis, an obligate intracellular bacterial parasite, contains several eukaryotic glycerophospholipids, yet attempts to demonstrate transfer of these lipids to the chlamydial cell membrane have not been successful. In this report, we demonstrate that eukaryotic glycerophospholipids are trafficked from the host cell to C. trachomatis. Phospholipid trafficking was assessed by monitoring the incorporation of radiolabelled isoleucine, a precursor of C. trachomatis specific branched-chain fatty acids, into host-derived glycerophospholipids and by monitoring the transfer of host phosphatidylserine to chlamydiae and its subsequent decarboxylation to form phosphatidylethanolamine. Phospholipid trafficking to chlamydiae was unaffected by brefeldin A, an inhibitor of Golgi function. Furthermore, no changes in trafficking were observed when C. trachomatis was grown in a mutant cell line with a nonfunctional, nonspecific phospholipid transfer protein. Host glycerophospholipids are modified by C. trachomatis, such that a host-synthesized straight-chain fatty acid is replaced with a chlamydia-synthesized branched-chain fatty acid. We also demonstrate that despite the acquisition of host-derived phospholipids, C. trachomatis is capable of de novo synthesis of phospholipids typically synthesized by prokaryotic cells. Our results provide novel information on chlamydial phospholipid metabolism and eukaryotic cell lipid trafficking, and they increase our understanding of the evolutionary steps leading to the establishment of an intimate metabolic association between an obligate intracellular bacterial parasite and a eukaryotic host cell.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference56 articles.

1. CD~ T-lymphocyte mediated Iysis of Chlamydia-infected L cells using an endogenous antigen pathway;Beatty P. R.;J. Immunol.,1994

2. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis;Caldwell H. D.;Infect. Immun.,1981

3. Cytosolic phospholipase A2;Clark J. D.;J. Lipid Med. Cell Signal.,1995

4. Cellular microbiology emerging;Cossart P.;Science,1996

5. Intracellular sites of lipid synthesis and the biogenesis of mitochondria;Dennis E. A.;J. Lipid Res.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3