Differences in Temperature and Water Chemistry Shape Distinct Diversity Patterns in Thermophilic Microbial Communities

Author:

Chiriac Cecilia M.12,Szekeres Edina12,Rudi Knut3,Baricz Andreea12,Hegedus Adriana12,Dragoş Nicolae12,Coman Cristian1

Affiliation:

1. NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania

2. Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania

3. Chemistry, Biotechnology and Food Science Department, Norwegian University of Life Sciences, Aas, Norway

Abstract

ABSTRACT This report describes the biodiversity and ecology of microbial mats developed in thermal gradients (20 to 65°C) in the surroundings of three drillings (Chiraleu [CH], Ciocaia [CI], and Mihai Bravu [MB]) tapping a hyperthermal aquifer in Romania. Using a metabarcoding approach, 16S rRNA genes were sequenced from both DNA and RNA transcripts (cDNA) and compared. The relationships between the microbial diversity and the physicochemical factors were explored. Additionally, the cDNA data were used for in silico functionality predictions, bringing new insights into the functional potential and dynamics of these communities. The results showed that each hot spring determined the formation of distinct microbial communities. In the CH mats (40 to 53°C), the abundance of Cyanobacteria decreased with temperature, opposite to those of Chloroflexi and Proteobacteria . Ectothiorhodospira , Oscillatoria , and methanogenic archaea dominated the CI communities (20 to 65°C), while the MB microbial mats (53 to 65°C) were mainly composed of Chloroflexi , Hydrogenophilus , Thermi , and Aquificae . Alpha-diversity was negatively correlated with the increase in water temperature, while beta-diversity was shaped in each hot spring by the unique combination of physicochemical parameters, regardless of the type of nucleic acid analyzed (DNA versus cDNA). The rank correlation analysis revealed a unique model that associated environmental data with community composition, consisting in the combined effect of Na + , K + , HCO 3 , and PO 4 3− concentrations, together with temperature and electrical conductivity. These factors seem to determine the grouping of samples according to location, rather than with the similarities in thermal regimes, showing that other parameters beside temperature are significant drivers of biodiversity. IMPORTANCE Hot spring microbial mats represent a remarkable manifestation of life on Earth and have been intensively studied for decades. Moreover, as hot spring areas are isolated and have a limited exchange of organisms, nutrients, and energy with the surrounding environments, hot spring microbial communities can be used in model studies to elucidate the colonizing potential within extreme settings. Thus, they are of great importance in evolutionary biology, microbial ecology, and exobiology. In spite of all the efforts that have been made, the current understanding of the influence of temperature and water chemistry on the microbial community composition, diversity, and abundance in microbial mats is limited. In this study, the composition and diversity of microbial communities developed in thermal gradients in the vicinity of three hot springs from Romania were investigated, each having particular physicochemical characteristics. Our results expose new factors that could determine the formation of these ecosystems, expanding the current knowledge in this regard.

Funder

POSDRU programme

EEA Grants

Core Programme

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3