Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy

Author:

Tsai Angela1,Irrinki Alivelu1,Kaur Jasmine1,Cihlar Tomas1,Kukolj George1,Sloan Derek D.1,Murry Jeffrey P.1ORCID

Affiliation:

1. Gilead Sciences, Foster City, California, USA

Abstract

ABSTRACT Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs. IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is persistently maintained in reservoirs of latently infected cells. Consequently, lifelong therapy is required to maintain viral suppression. Ultimately, new therapies that specifically target and eliminate the latent HIV reservoir are needed. Toll-like receptor agonists are potent enhancers of innate antiviral immunity that can also improve the adaptive immune response. Here, we show that a highly selective TLR7 agonist, GS-9620, activated HIV from peripheral blood mononuclear cells isolated from HIV-infected individuals with suppressed infection. GS-9620 also improved immune effector functions that specifically targeted HIV-infected cells. Previously published studies on the compound in other chronic viral infections show that it can effectively induce immune activation at safe and tolerable clinical doses. Together, the results of these studies suggest that GS-9620 may be useful for treating HIV-infected individuals on suppressive antiretroviral therapy.

Funder

Gilead Sciences

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3