Viral determinants of age-dependent virulence of Sindbis virus for mice

Author:

Tucker P C1,Strauss E G1,Kuhn R J1,Strauss J H1,Griffin D E1

Affiliation:

1. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Abstract

Many alphaviruses cause more severe disease in young animals than in older animals. The age-dependent resistance to severe disease is determined primarily by maturation of the host, but strains of virus can be selected that overcome the increased resistance of mature animals. Sindbis virus (SV) strain AR339 causes fatal encephalitis in newborn mice and nonfatal encephalitis in weanling mice, whereas NSV, a neuroadapted strain of SV, causes fatal encephalitis in weanling as well as newborn mice. We have previously shown that the E2 glycoprotein of NSV contained His-55, whereas AR339 E2 had Gln-55 (S. Lustig, A. C. Jackson, C. S. Hahn, D. E. Griffin, E. G. Strauss, and J. H. Strauss, J. Virol. 62:2329-2336, 1988) and that SV with E2 containing Gly-172 was more virulent for newborn mice than SV with E2 containing Arg-172 (P. C. Tucker and D. E. Griffin, J. Virol. 65:1551-1557, 1991). Here we tested the virulence for both newborn and older mice of SV containing a number of different amino acids at E2 position 55 (His, Gln, Lys, Arg, Glu, Gly) in combination with both Gly-172 and Arg-172. All the viruses were virulent for newborn mice, but the residues at both 55 and 172 influenced the virulence of the virus, and there were differences in virulence observed among the various viruses. However, only viruses with His-55 were fully virulent for 14-day-old mice, and this virulence was independent of the residue at position 172. Virus with Lys-55 was virulent for 7-day-old mice, although slightly attenuated relative to His-55. Viruses with His-55 grew more rapidly and to higher titer in the brains of 7- and 14-day-old mice, in N18 neuroblastoma cells, and in BHK cells. Our data suggest that His-55 is important for neurovirulence in older mice and acts by increasing the efficiency of virus replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3