Affiliation:
1. Department of Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219
Abstract
The characteristics of the biotin transport mechanism of
Saccharomyces cerevisiae
were investigated in nonproliferating cells. Microbiological and radioisotope assays were employed to measure biotin uptake. The vitamin existed intracellularly in both free and bound forms. Free biotin was extracted by boiling water. Chromatography of the free extract showed it to consist entirely of
d
-biotin. Cellular bound biotin was released by treating cells with 6
n
H
2
SO
4
. The rate of biotin uptake was linear with time for 10 min, reaching a maximum at about 20 min followed by a gradual loss of accumulated free vitamin from the cells. Biotin was not degraded or converted to vitamers during uptake. Transport was temperature- and
p
H-dependent, optimum conditions for uptake being 30 C and
p
H 4.0. Glucose markedly stimulated biotin transport. In its presence, large intracellular free-biotin concentration gradients were established. Iodoacetate inhibited the glucose stimulation of biotin uptake. The rate of vitamin transport increased in a linear fashion with increasing cell mass. The transport system was saturated with increasing concentrations of the vitamin. The apparent
K
m
for uptake was 3.23 × 10
−7
m
. Uptake of radioactive biotin was inhibited by unlabeled biotin and a number of analogues including homobiotin, desthiobiotin, oxybiotin, norbiotin, and biotin sulfone. Proline, hydroxyproline, and 7,8-diaminopelargonic acid did not inhibit uptake. Unlabeled biotin and desthiobiotin exchanged with accumulated intracellular
14
C-biotin, whereas hydroxyproline did not.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献