Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum

Author:

V�lkl P1,Huber R1,Drobner E1,Rachel R1,Burggraf S1,Trincone A1,Stetter K O1

Affiliation:

1. Archaeenzentrum, Universit�t Regensburg, Germany.

Abstract

A novel rod-shaped hyperthermophilic archaeum has been isolated from a boiling marine water hole at Maronti Beach, Ischia, Italy. It grew optimally at 100 degrees C and pH 7.0 by aerobic respiration as well as by dissimilatory nitrate reduction, forming dinitrogen as a final product. Organic and inorganic compounds served as substrates during aerobic and anaerobic respiration. Growth was inhibited by elemental sulfur. The cell wall was composed of a surface layer of hexameric protein complexes arranged on a p6 lattice. The core lipids consisted mainly of glycerol diphytanyl glycerol tetraethers with various degrees of cyclization. The G+C content was 52 mol%. The new isolate resembled members of the genera Thermoproteus and Pyrobaculum by its ability to form characteristic terminal spherical bodies ("golf clubs"). On the basis of its 16S rRNA sequence, the new isolate exhibited a close relationship to the genus Pyrobaculum. It is described as a new species, which we name Pyrobaculum aerophilum (type strain: IM2; DSM 7523).

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3