Thyroid hormone receptor transcriptional activity is potentially autoregulated by truncated forms of the receptor.

Author:

Bigler J,Hokanson W,Eisenman R N

Abstract

ErbA/thyroid hormone receptor is a nuclear receptor that can affect transcription from promoters containing a thyroid hormone response element (TRE) in a thyroid hormone (T3)-dependent manner. We reported earlier that the thyroid hormone receptor is expressed in embryonic avian erythroid cells as a nested set of four proteins with a common C terminus. The full-length receptor is capable of both high-affinity binding to thyroid hormone and specific binding to DNA. We now report that the two smallest ErbA forms, which contain the hormone-binding domain but lack the N-terminal DNA-binding domain, have the same affinity for T3 as does full-length ErbA but are incapable of specific DNA binding. In transactivation assays, these N-terminally truncated proteins are able to specifically suppress both transcriptional repression and hormone-dependent transcriptional activation by the full-length ErbA. We also find that retinoic acid-dependent transactivation by retinoic acid receptors is inhibited by the truncated ErbA proteins. Furthermore, the smaller ErbA forms inhibit binding to TREs by full-length ErbA in vitro. Results from experiments involving site-specific mutagenesis of a conserved region within the hormone-binding domain of the smaller ErbA proteins indicate that the suppressive effect of the smaller receptor forms is independent of hormone binding and that this region is important in mediating protein-hormone as well as protein-protein interactions. We have also found that full-length ErbA homodimers can be detected only in the presence of a specific DNA-binding site. However, no association between full-length and the N-terminally truncated non-DNA-binding ErbA proteins could be detected, indicating that the complex either is unstable or does not form. Our results suggest that inhibition of receptor function occurs through transient formation of heterodimers which lack DNA-binding activity or by competition for factors which positively affect DNA binding by the full-length protein. This finding raises the possibility that thyroid hormone receptor transcriptional activity is autoregulated by means of alternative receptor translation products acting in a dominant negative manner.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thyroid hormone resistance: Mechanisms and therapeutic development;Molecular and Cellular Endocrinology;2022-08

2. TRα2—An Untuned Second Fiddle or Fine-Tuning Thyroid Hormone Action?;International Journal of Molecular Sciences;2022-06-23

3. Thyroid Hormone Action: The p43 Mitochondrial Pathway;Methods in Molecular Biology;2018

4. Mitochondrial T3 receptor and targets;Molecular and Cellular Endocrinology;2017-12

5. Genetic Investigation of Thyroid Hormone Receptor Function in the Developing and Adult Brain;Current Topics in Developmental Biology;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3