NADH Availability Limits Asymmetric Biocatalytic Epoxidation in a Growing Recombinant Escherichia coli Strain

Author:

Bühler Bruno1,Park Jin-Byung2,Blank Lars M.13,Schmid Andreas13

Affiliation:

1. Laboratory of Chemical Biotechnology, Dortmund University of Technology, D-44227 Dortmund, Germany

2. Department of Food Science and Technology, Ewha Womans University, Seoul 120-750, Korea

3. Institute for Analytical Sciences, D-44139 Dortmund, Germany

Abstract

ABSTRACT Styrene can efficiently be oxidized to ( S )-styrene oxide by recombinant Escherichia coli expressing the styrene monooxygenase genes styAB from Pseudomonas sp. strain VLB120. Targeting microbial physiology during whole-cell redox biocatalysis, we investigated the interdependency of styrene epoxidation, growth, and carbon metabolism on the basis of mass balances obtained from continuous two-liquid-phase cultures. Full induction of styAB expression led to growth inhibition, which could be attenuated by reducing expression levels. Operation at subtoxic substrate and product concentrations and variation of the epoxidation rate via the styrene feed concentration allowed a detailed analysis of carbon metabolism and bioconversion kinetics. Fine-tuned styAB expression and increasing specific epoxidation rates resulted in decreasing biomass yields, increasing specific rates for glucose uptake and the tricarboxylic acid (TCA) cycle, and finally saturation of the TCA cycle and acetate formation. Interestingly, the biocatalysis-related NAD(P)H consumption was 3.2 to 3.7 times higher than expected from the epoxidation stoichiometry. Possible reasons include uncoupling of styrene epoxidation and NADH oxidation and increased maintenance requirements during redox biocatalysis. At epoxidation rates of above 21 μmol per min per g cells (dry weight), the absence of limitations by O 2 and styrene and stagnating NAD(P)H regeneration rates indicated that NADH availability limited styrene epoxidation. During glucose-limited growth, oxygenase catalysis might induce regulatory stress responses, which attenuate excessive glucose catabolism and thus limit NADH regeneration. Optimizing metabolic and/or regulatory networks for efficient redox biocatalysis instead of growth (yield) is likely to be the key for maintaining high oxygenase activities in recombinant E. coli .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3