Genes That Enhance the Ecological Fitness of Shewanella oneidensis MR-1 in Sediments Reveal the Value of Antibiotic Resistance

Author:

Groh Jennifer L.1,Luo Qingwei1,Ballard Jimmy D.2,Krumholz Lee R.1

Affiliation:

1. Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019

2. Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

Abstract

ABSTRACT Environmental bacteria persist in various habitats, yet little is known about the genes that contribute to growth and survival in their respective ecological niches. Signature-tagged mutagenesis (STM) of Shewanella oneidensis MR-1 coupled with a screen involving incubations of mutant strains in anoxic aquifer sediments allowed us to identify 47 genes that enhance fitness in sediments. Gene functions inferred from annotations provide us with insight into physiological and ecological processes that environmental bacteria use while growing in sediment ecosystems. Identification of the mexF gene and other potential membrane efflux components by STM demonstrated that homologues of multidrug resistance genes present in pathogens are required for sediment fitness of nonpathogenic bacteria. Further studies with a mexF deletion mutant demonstrated that the multidrug resistance pump encoded by mexF is required for resistance to antibiotics, including chloramphenicol and tetracycline. Chloramphenicol-adapted cultures exhibited mutations in the gene encoding a TetR family regulatory protein, indicating a role for this protein in regulating expression of the mexEF operon. The relative importance of mexF for sediment fitness suggests that antibiotic efflux may be a required process for bacteria living in sediment systems.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3