RNA polymerase III transcription in synthetic nuclei assembled in vitro from defined DNA templates

Author:

Ullman K S1,Forbes D J1

Affiliation:

1. Department of Biology, University of California at San Diego, La Jolla 92093-0347, USA.

Abstract

Although much is known of the basic control of transcription, little is understood of the way in which the structural organization of the nucleus affects transcription. Synthetic nuclei, assembled de novo in extracts of Xenopus eggs, would be predicted to have a large potential for approaching the role of nuclear structure in RNA biogenesis. Synthetic nuclei provide a system in which the genetic content of the nuclei, as well as the structural and enzymatic proteins within the nuclei, can be manipulated. In this study, we have begun to examine transcription in such nuclei by using the most simple of templates, RNA polymerase III (pol III)-transcribed genes. DNA encoding tRNA or 5S genes was added to an assembly extract, and nuclei were formed entirely from the pol III templates. Conditions which allowed nuclear assembly and pol III transcription to take place efficiently and simultaneously in the assembly extract were found. To examine whether pol III transcription could initiate within synthetic nuclei, or instead was inhibited in nuclei and initiated only on rare unincorporated templates, we identified transcriptional inhibitors that were excluded from nuclei. We found that these inhibitors, heparin and dextran sulfate, blocked pol III transcription in the absence of assembly but did not do so following nuclear assembly. At the concentrations used, the inhibitors had no deleterious effect on nuclear structure itself or on nuclear import. We conclude that pol III transcription is active in synthetic nuclei, and this conclusion is further strengthened by the finding that pol III transcripts could be coisolated with synthetic nuclei. The rapid and direct transcriptional analysis possible with pol III templates, coupled with the simple experimental criteria developed in this study for distinguishing between nuclear and non-nuclear transcription, should now allow a molecular analysis of the effect of nuclear structure on transcriptional and posttranscriptional control.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3