Longitudinal Metatranscriptomic Analysis of a Meat Spoilage Microbiome Detects Abundant Continued Fermentation and Environmental Stress Responses during Shelf Life and Beyond

Author:

Hultman Jenni1ORCID,Johansson Per1,Björkroth Johanna1ORCID

Affiliation:

1. Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland

Abstract

It is generally known which organisms are the typical SSO in foods, whereas the actively transcribed genes and pathways during microbial succession are poorly understood. This knowledge is important, since better approaches to food quality evaluation and shelf life determination are needed. Therefore, we conducted this study to find longitudinal markers that are connected to quality deterioration in a MAP beef product. This kind of RNA marker could be used to develop novel types of rapid quality analysis tools in the future. New tools are needed, since even though SSO can be detected and their concentrations determined using the current microbiological methods, results from these analyses cannot predict how close in time a spoilage community is to the production of clear sensory defects. The main reason for this is that the species composition of a spoilage community does not change dramatically during late shelf life, whereas the ongoing metabolic activities lead to the development of notable sensory deterioration.

Funder

Walter Ehrström Foundation

Academy of Finland

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3