Viability of Bacillus licheniformis and Bacillus thuringiensis Spores as a Model for Predicting the Fate of Bacillus anthracis Spores during Composting of Dead Livestock

Author:

Reuter Tim1,Alexander Trevor W.2,McAllister Tim A.3

Affiliation:

1. Alberta Agriculture Food, Agriculture Centre, Lethbridge, Alberta T1J 4V6, Canada

2. University of Vermont, Department of Animal Science, Burlington, Vermont 05405

3. Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1, Canada

Abstract

ABSTRACT Safe disposal of dead livestock and contaminated manure is essential for the effective control of infectious disease outbreaks. Composting has been shown to be an effective method of disposal, but no information exists on its ability to contain diseases caused by spore-forming bacteria, such as Bacillus anthracis . Duplicate composters (east and west), each containing 16 dead cattle, were constructed (final capacity, 85,000 kg). Spores (10 7 CFU/g manure) of Bacillus licheniformis and Bacillus thuringiensis were mixed with autoclaved feedlot manure and placed in either sterile vials or porous nylon bags. Compost temperatures in the west composter were slightly higher than in the east composter. Viable B. thuringiensis spores were reduced to ≤10 2 CFU in all samples after 112 days but were isolated from bags (west composter) at ≤10 2 and at 10 5 CFU (east composter) after 230 days. In contrast, B. licheniformis was at ≤10 2 CFU in vials (west composter) after 112 days but remained at 10 6 CFU after 230 days (east composter). Similarly, B. licheniformis in bags was not detected after 230 days in the west composter but remained at 10 7 CFU in the east composter. Our study suggests that spore viability was reduced in the west composter by exposure to compost and elevated temperatures over time. Different temperature profiles may explain why spores remained viable in the east structure but were largely rendered nonviable in the west structure. Under practical conditions, variation in composting microclimates may preclude the complete inactivation of Bacillus spores, including those of B. anthracis , during composting. However, composting may still have merit as a method of biocontainment, reducing and diluting the transfer of infectious spores into the environment.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3