Cloning of Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance in N2 fixation

Author:

Buckmiller L M1,Lapointe J P1,Ludwig R A1

Affiliation:

1. Department of Biology, University of California, Santa Cruz 95064.

Abstract

Twenty Azorhizobium caulinodans vector insertion (Vi) mutants unable to catabolize nicotinate (Nic- phenotype) were identified and directly cloned as pVi plasmids. These pVi plasmids were used as DNA hybridization probes to isolate homologous wild-type sequences. From subsequent physical mapping experiments, the nic::Vi mutants defined four distinct loci. Two, possibly three, of these loci are physically linked. A. caulinodans nic loci II and III encode the structural genes for nicotinate catabolism; nic loci I and IV encode nicotinate-driven respiratory chain components. Recombinant lambda bacteriophages corresponding to three of these loci were subcloned in pRK293; resulting plasmids were used for complementation tests with resolved nic::IS50 derivatives of the nic::Vi mutants. When wild-type A. caulinodans was cultured in defined liquid medium under 3% O2, nicotinate catabolism stimulated N2 fixation 10-fold. In these exponentially growing cultures, the entire (300 microM) nicotinate supplement was exhausted within 10 h. While nic::Vi mutants retained the ability to fix some N2, they did so at rates only 10% of that of the wild type: nitrogenase activity by nic::Vi mutants was not stimulated by 300 microM added nicotinate. Higher-level (5 mM) nicotinate supplementation inhibited N2 fixation. Because 5 mM nicotinate repressed nitrogenase induction in all nic::Vi mutants as well, this repression was independent of nicotinate catabolism. During catabolism, nicotinate is first oxidized to 6-OH-nicotinate by a membrane-bound nicotinate hydroxylase which drives a respiratory chain to O2. In A. caulinodans wild-type cultures, added 300 microM 6-OH-nicotinate stimulated N2 fixation twofold better than did added 300 microM nicotinate. Likewise, nic::Vi mutant 61302, defective in nicotinate hydroxylase, fixed N2 at wild-type levels when supplemented with 300 microM 6-OH-nicotinate. Therefore, nicotinate catabolism stimulates N2 fixation not by nicotinate hydroxylase-driven respiration but rather by some subsequent aspect(s) of nicotinate catabolism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference16 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. A. Smith J. G. Seidman and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons Inc. New York.

2. Broad host range cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti;Ditta G.;Proc. Natl. Acad. Sci. USA,1980

3. Characterization of three genomic loci encoding Rhizobium sp. strain ORS571 N2 fixation genes;Donald R. G. K.;J. Bacteriol.,1986

4. Vector insertion mutagenesis of Rhizobium sp. strain ORS571: direct cloning of mutagenized DNA sequences;Donald R. G. K.;J. Bacteriol.,1985

5. Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata;Dreyfus B. L.;FEMS Microbiol. Lett.,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3