Temperature-sensitive binding of alpha-glucans by Bacillus stearothermophilus

Author:

Ferenci T,Lee K S

Abstract

Bacillus stearothermophilus was found to bind strongly to starch and related alpha-glucans at 25 degrees C but not at 55 degrees C. The binding at the lower temperature could be assayed either by binding of fluorescein-labeled amylopectin to washed cell suspensions or through the reversible retention of bacteria by affinity chromatography in matrices containing immobilized starch. The bacteria exhibited amylopectin-dependent agglutination. The binding and agglutination were highest in bacteria grown on substrates containing alpha-1,4-glucosidic linkages such as maltose or dextrins. The binding affinity of cells was highest for maltohexaose, lower for maltose, and low or undetectable for glucose, isomaltose, cellobiose, or lactose. The reduced binding at the higher temperature was due to the rapid breakdown of the alpha-glucosides. The bacteria exhibited an extracellular alpha-amylase activity as well as a cell-associated alpha-glucosidase with high activity at 55 degrees C but undetectable activity at 25 degrees C. The inducibility, specificity, and protease sensitivity of the thermophilic alpha-glucosidase in whole cells were similar to those of the binding activity assayed at the lower temperature. Further evidence linking the binding and alpha-glucosidase activities came from a mutant, selected through affinity chromatography, which was reduced in starch binding at room temperature and also reduced in membrane-associated alpha-glucosidase activity at 55 degrees C. These results suggest a novel survival mechanism whereby a bacterium attaches to a macromolecular substrate under nonoptimal growth conditions for possible utilization upon a shift to more favorable conditions.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3