Vaccinia Virus F1L Protein Is a Tail-Anchored Protein That Functions at the Mitochondria To Inhibit Apoptosis

Author:

Stewart Tara L.1,Wasilenko Shawn T.1,Barry Michele1

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada

Abstract

ABSTRACT Members of the poxvirus family encode multiple immune evasion proteins, including proteins that regulate apoptosis. We recently identified one such protein, F1L, encoded by vaccinia virus, the prototypic member of the poxvirus family. F1L localizes to the mitochondria and inhibits apoptosis by interfering with the release of cytochrome c , the pivotal commitment step in the apoptotic cascade. Sequence analysis of the F1L open reading frame revealed a C-terminal motif composed of a 12-amino-acid transmembrane domain flanked by positively charged lysines, followed by an 8-amino-acid hydrophilic tail. By generating a series of F1L deletion constructs, we show that the C-terminal domain is necessary and sufficient for localization of F1L to the mitochondria. In addition, mutation of lysines 219 and 222 downstream of the C-terminal transmembrane domain resulted in altered localization of F1L to the endoplasmic reticulum. Using F1L protein generated in an in vitro transcription-translation system, we found that F1L was posttranslationally inserted into mitochondria and tightly associated with mitochondrial membranes as demonstrated by resistance to alkaline extraction. Sensitivity to protease digestion showed that the N terminus of F1L was exposed to the cytoplasm. Utilizing various F1L deletion constructs, we found that F1L localization to the mitochondria was necessary to inhibit apoptosis, since constructs that no longer localized to the mitochondria had reduced antiapoptotic ability. Our studies show that F1L is a new member of the tail-anchored protein family that localizes to mitochondria during virus infection and inhibits apoptosis as a means to enhance virus survival.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3