Affiliation:
1. National Heart and Lung Institute and National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20014
Abstract
The normal sequence of cell separation in
Saccharomyces cerevisiae
begins with the formation of a primary septum, presumably consisting of chitin, on which secondary septa are later deposited. In the presence of the antibiotic polyoxin D, a potent inhibitor of chitin synthetase, pairs of abnormal cells of two different types were observed by phase-contrast microscopy: the “exploded pair,” consisting of two lysed cells from which the cytoplasm had been extruded at the cell junction, and the “refringent pair,” consisting of two highly refractile cells joined by a thin bridge. Thus, in both cases the septal region appears to be affected. Observations with the electron microscope showed that the primary chitin septum was not formed in either of these cell types, and as a consequence secondary septa of varying thicknesses were laid down in an abnormal pattern. With [
3
H]glucose as carbon source the incorporation of tritium into the chitin of abnormal cells was inhibited about 90%, whereas the labeling of mannan was normal and that of glucan somewhat reduced. The effective concentrations of polyoxin D (0.1 to 1 mg/ml) were much greater than those required to inhibit chitin synthesis in vitro. Dimethylsulfoxide and amphotericin B, both known to increase cell permeability, enhanced the action of the antibiotic.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献