Time Scale for Rejoining of Bacteriophage λ Deoxyribonucleic Acid Molecules in Superinfected pol + and polA1 Strains of Escherichia coli After Exposure to 4 MeV Electrons

Author:

Boye Erik1,Johansen Ivar1,Brustad Tor1

Affiliation:

1. Department of Medical Physics, The Norwegian Radium Hospital, Montebello; Institute of General Genetics, The University of Oslo and Department of Biophysics, Norsk Hydro's Institute for Cancer Research, Montebello, Oslo 3, Norway

Abstract

The time scale for rejoining of radiation-induced deoxyribonucleic acid (DNA) single-strand breaks was measured in the presence and absence of oxygen. The involvement of DNA polymerase I in this repair process was studied. Formation and rejoining of DNA strand breaks were measured in λ DNA infecting lysogenic pol + and polA1 strains of Escherichia coli irradiated by 4 MeV electrons under identical conditions. Irradiation and transfer to alkaline detergent could be completed in less than 180 ms. The initial yields of DNA strand breaks were identical in pol + and polA1 host cells and four- to fivefold higher in the presence of oxygen than in nitrogen anoxia. Evidence for the existence of a very fast repair process, independent of DNA polymerase I, was not found, since no rejoining of radiation-induced DNA strand breaks was observed during incubation from 45 ms to 3 s. In pol + host cells most of the strand breaks produced in the presence of oxygen were rejoined within the first 30 to 40 s of incubation, whereas no rejoining could be detected within the same period of time in anoxic cells. Since no rejoining of broken λ DNA molecules was observed in polA1 host cells, it is concluded that the synthetase activity of DNA polymerase I is involved in the rejoining of DNA breaks induced by radiation in the presence of oxygen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3