The UL45 gene product is required for herpes simplex virus type 1 glycoprotein B-induced fusion

Author:

Haanes E J1,Nelson C M1,Soule C L1,Goodman J L1

Affiliation:

1. Department of Medicine, University of Minnesota, Minneapolis 55455.

Abstract

Herpes simplex virus type 1 (HSV-1) syncytial (syn) mutants cause formation of giant polykaryocytes and have been utilized to identify genes promoting or suppressing cell fusion. We previously described an HSV-1 recombinant, F1 (J.L. Goodman, M. L. Cook, F. Sederati, K. Izumi, and J. G. Stevens, J. Virol. 63:1153-1161, 1989), which has unique virulence properties and a syn mutation in the carboxy terminus of glycoprotein B (gB). We attempted to replace this single-base-pair syn mutation through cotransfection with a 379-bp PCR-generated fragment of wild-type gB. The nonsyncytial viruses isolated were shown by DNA sequencing not to have acquired the expected wild-type gB sequence. Instead, they had lost their cell-cell fusion properties because of alterations mapping to the UL45 gene. The mutant UL45 gene is one nonsyncytial derivative of F1, A4B, was found to have a deletion of a C at UL45 nucleotide 230, resulting in a predicted frame shift and termination at 92 rather than 172 amino acids. Northern (RNA) analysis showed that the mutant UL45 gene was normally transcribed. However, Western immunoblotting showed no detectable UL45 gene product from A4B or from another similarly isolated nonsyncytial F1 derivative, A61B, while another such virus, 1ACSS, expressed reduced amounts of UL45. When A4B was cotransfected with the wild-type UL45 gene, restoration of UL45 expression correlated with restoration of syncytium formation. Conversely, cloned DNA fragments containing the mutant A4B UL45 gene transferred the loss of cell-cell fusion to other gB syn mutants, rendering them UL45 negative and nonsyncytial. We conclude that normal UL45 expression is required to allow cell fusion induced by gB syn mutants and that the nonessential UL45 protein may play an important role as a mediator of fusion events during HSV-1 infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference48 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1993. Current protocols in molecular biology. Greene/Wiley Interscience New York.

2. The UL20 gene of herpes simplex virus I encodes a function necessary for viral egress;Baines J. D.;J. Virol.,1991

3. Fine structure physical map locations of alterations that affect cell fusion in herpes simplex virus type 1;Bond V. C.;Virology,1984

4. Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion;Bzik D. J.;Virology,1984

5. Role of glycoprotein B of herpes simplex virus type 1 in entry and cell fusion;Cai W.;J. Virol.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3