Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies.

Author:

Lai B T,Chin N W,Stanek A E,Keh W,Lanks K W

Abstract

Two monoclonal antibodies have been produced against the human 85,000-molecular-weight heat shock protein (hsp85). One of these, 16F1, cross-reacts with the murine homolog and is shown by peptide map immunoblots to be directed against an epitope different from that recognized by the other monoclonal antibody, 9D2. Both monoclonal antibodies recognize only a single Mr-85,000 species in two-dimensional immunoblots. Immunoprecipitation did not reveal an association of this heat shock protein with any other protein in HeLa cells. Immunoperoxidase staining showed a purely cytosolic distribution at both light and electron microscopic levels and no association with membranes, mitochondria, or other organelles. The 9D2 monoclonal and a polyclonal antimurine hsp85 antibody were used to identify the antigens and to quantitate their levels in a variety of normal tissues by immunoautoradiography. Relative abundance in the various tissues as determined by Coomassie blue staining correlates reasonably well with the immunoreactivity. Testis and brain, for example, have high hsp85 levels, whereas heart and skeletal muscle have little or none. The Mr-85,000 sodium dodecyl sulfate-polyacrylamide gel band in testis and brain lysates was further confirmed to be hsp85 by one-dimensional partial proteolytic peptide mapping. Based on these data and our previous observations showing that synthesis and levels of the protein are altered by depriving cultured cells of glucose, we speculate that intracellular hsp85 levels depend on differences in the intermediary metabolism of glucose in the various tissues. Furthermore, it appears that high basal levels of this heat shock protein may not necessarily protect cells against heat shock, since testis is one of the most heat-sensitive tissues and has the highest hsp85 level.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 228 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3