NS3 Peptide, a Novel Potent Hepatitis C Virus NS3 Helicase Inhibitor: Its Mechanism of Action and Antiviral Activity in the Replicon System

Author:

Gozdek Agnieszka1,Zhukov Igor12,Polkowska Agnieszka1,Poznanski Jaroslaw1,Stankiewicz-Drogon Anna1,Pawlowicz Jerzy M.1,Zagórski-Ostoja Wlodzimierz1,Borowski Peter3,Boguszewska-Chachulska Anna M.1

Affiliation:

1. Institute of Biochemistry and Biophysics PAS, Warsaw, Poland

2. National Institute of Chemistry, SI-1001, Lubljana, Slovenia

3. Institute of Environmental Protection, John Paul II Catholic University of Lublin, Lublin, Poland

Abstract

ABSTRACT Hepatitis C virus (HCV) chronic infections represent one of the major and still unresolved health problems because of low efficiency and high cost of current therapy. Therefore, our studies centered on a viral protein, the NS3 helicase, whose activity is indispensable for replication of the viral RNA, and on its peptide inhibitor that corresponds to a highly conserved arginine-rich sequence of domain 2 of the helicase. The NS3 peptide (p14) was expressed in bacteria. Its 50% inhibitory activity in a fluorometric helicase assay corresponded to 725 nM, while the ATPase activity of NS3 was not affected. Nuclear magnetic resonance (NMR) studies of peptide-protein interactions using the relaxation filtering technique revealed that p14 binds directly to the full-length helicase and its separately expressed domain 1 but not to domain 2. Changes in the NMR chemical shift of backbone amide nuclei ( 1 H and 15 N) of domain 1 or p14, measured during complex formation, were used to identify the principal amino acids of both domain 1 and the peptide engaged in their interaction. In the proposed interplay model, p14 contacts the clefts between domains 1 and 2, as well as between domains 1 and 3, preventing substrate binding. This interaction is strongly supported by cross-linking experiments, as well as by kinetic studies performed using a fluorometric assay. The antiviral activity of p14 was tested in a subgenomic HCV replicon assay that showed that the peptide at micromolar concentrations can reduce HCV RNA replication.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3