Fermentative Production of Cysteine by Pantoea ananatis

Author:

Takumi Kazuhiro1,Ziyatdinov Mikhail Kharisovich2,Samsonov Viktor2,Nonaka Gen1

Affiliation:

1. Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan

2. Ajinomoto-Genetika Research Institute, Moscow, Russia

Abstract

ABSTRACT Cysteine is a commercially important amino acid; however, it lacks an efficient fermentative production method. Due to its cytotoxicity, intracellular cysteine levels are stringently controlled via several regulatory modes. Managing its toxic effects as well as understanding and deregulating the complexities of regulation are crucial for establishing the fermentative production of cysteine. The regulatory modes include feedback inhibition of key metabolic enzymes, degradation, efflux pumps, and the transcriptional regulation of biosynthetic genes by a master cysteine regulator, CysB. These processes have been extensively studied using Escherichia coli for overproducing cysteine by fermentation. In this study, we genetically engineered Pantoea ananatis , an emerging host for the fermentative production of bio-based materials, to identify key factors required for cysteine production. According to this and our previous studies, we identified a major cysteine desulfhydrase gene, ccdA (formerly PAJ_0331), involved in cysteine degradation, and the cysteine efflux pump genes cefA and cefB (formerly PAJ_3026 and PAJ_p0018, respectively), which may be responsible for downregulating the intracellular cysteine level. Our findings revealed that ccdA deletion and cefA and cefB overexpression are crucial factors for establishing fermentative cysteine production in P. ananatis and for obtaining a higher cysteine yield when combined with genes in the cysteine biosynthetic pathway. To our knowledge, this is the first demonstration of cysteine production in P. ananatis , which has fundamental implications for establishing overproduction in this microbe. IMPORTANCE The efficient production of cysteine is a major challenge in the amino acid fermentation industry. In this study, we identified cysteine efflux pumps and degradation pathways as essential elements and genetically engineered Pantoea ananatis , an emerging host for the fermentative production of bio-based materials, to establish the fermentative production of cysteine. This study provides crucial insights into the design and construction of cysteine-producing strains, which may play central roles in realizing commercial basis production.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference55 articles.

1. Microbial conversion of DL-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine and L-cystine: screening of microorganisms and identification of products

2. Metabolic pathways and biotechnological production of l-cysteine

3. Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli

4. Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans

5. Kredich NM . 1996. Biosynthesis of cysteine, p 514–527. InNeidhardtFC CurtisR III IngrahamJL LinECC LowKB MagasanikB ReznikoffWS RileyM SchaechterM UmbargerHE (ed), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3