Hepatitis C Virus 3′X Region Interacts with Human Ribosomal Proteins

Author:

Wood Jonny1,Frederickson Robert M.2,Fields Stanley2,Patel Arvind H.1

Affiliation:

1. MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom,1 and

2. Howard Hughes Medical Institute, Departments of Genetics and Medicine, University of Washington, Seattle, Washington 98195-73602

Abstract

ABSTRACT To identify proteins that can bind the 3′ untranslated region (UTR) of hepatitis C virus (HCV) we screened human cDNA libraries using the Saccharomyces cerevisiae three-hybrid system. Screening with an RNA sequence derived from the 3′-terminal 98 nucleotides (3′X region) of an infectious clone of HCV (H77c) yielded clones of human ribosomal proteins L22, L3, S3, and mL3, a mitochondrial homologue of L3. We performed preliminary characterization of the binding between the 3′X region and these proteins by a three-hybrid mating assay using mutant 3′X sequences. We have further characterized the interaction between 3′X and L22, since this protein is known to be associated with two small Epstein-Barr virus (EBV)-encoded RNA species (EBERs) which are abundantly produced in cells latently infected with EBV. The EBERs, which have similar predicted secondary structure to the HCV 3′X, assemble into ribonucleoprotein particles that include L22 and La protein. To confirm that L22 binds HCV 3′X we performed in vitro binding assays using recombinant L22 (expressed as a glutathione S -transferase [GST] fusion protein) together with a 3′X riboprobe. The 3′X region binds to the GST-L22 fusion protein (but not to GST alone), and this interaction is subject to competition with unlabeled 3′X RNA. To establish the functional role played by L22 in internal ribosome entry site (IRES)-mediated translation of HCV sequences we performed translational analysis in HuH-7 cells using monocistronic and bicistronic reporter constructs. The relative amount of core-chloramphenicol acetyltransferase reporter protein translated under the control of the HCV IRES was stimulated in the presence of L22 and La when these proteins were supplied in trans .

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3