Affiliation:
1. Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
2. Faculty of Agriculture and Veterinary University of Prishtina, Prishtina, Kosovo
Abstract
ABSTRACT
From raw milk we found 10
Lactococcus garvieae
isolates that produce a new broad-spectrum bacteriocin. Though the isolates were obtained from different farms, they turned out to possess identical inhibitory spectra, fermentation profiles of sugars, and repetitive sequence-based PCR (rep-PCR) DNA patterns, indicating that they produce the same bacteriocin. One of the isolates (
L. garvieae
KS1546) was chosen for further assessment. Purification and peptide sequencing combined with genome sequencing revealed that the antimicrobial activity was due to a bacteriocin unit composed of three similar peptides of 32 to 34 amino acids. The three peptides are produced without leader sequences, and their genes are located next to each other in an operon-like structure, adjacent to the genes normally involved in bacteriocin transport (ABC transporter) and self-immunity. The bacteriocin, termed garvicin KS (GarKS), showed sequence homology to four multipeptide bacteriocins in databases: the known staphylococcal aureocin A70, consisting of four peptides, and three unannotated putative multipeptide bacteriocins produced by
Bacillus cereus
. All these multipeptide bacteriocin loci show conserved genetic organization, including being located adjacent to conserved genetic determinants (Cro/cI and integrase) which are normally associated with mobile genetic elements or genome rearrangements. The antimicrobial activity of all multipeptide bacteriocins was confirmed with synthetic peptides, and all were shown to have broad antimicrobial spectra, with GarKS being the most active of them. The inhibitory spectrum of GarKS includes important pathogens belonging to the genera
Staphylococcus
,
Bacillus
,
Listeria
, and
Enterococcus
.
IMPORTANCE
Bacterial resistance to antibiotics is a very serious global problem. There are no new antibiotics with novel antimicrobial mechanisms in clinical trials. Bacteriocins use antimicrobial mechanisms different from those of antibiotics and can kill antibiotic-resistant bacteria, but the number of bacteriocins with very broad antimicrobial spectra is very small. In this study, we have found and purified a novel three-peptide bacteriocin, garvicin KS. By homology search, we were able to find one known and three novel sequence-related bacteriocins consisting of 3 or 4 peptides. None of the peptides has modified amino acids in its sequence. Thus, the activity of all bacteriocins was confirmed with chemically synthesized peptides. All of them, especially garvicin KS, have very broad antibacterial spectra, thus representing a great potential in antimicrobial applications in the food industry and medicine.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology