Efficient transformation of Dictyostelium discoideum amoebae.

Author:

Barclay S L,Meller E

Abstract

We have transformed Dictyostelium discoideum amoebae by using derivatives of a plasmid, pAG60, which was designed for transformation of mammalian cells. The plasmid carries the promoter region of the herpes simplex virus type 1 thymidine kinase gene linked to the bacterial gene kan, which codes for the enzyme aminoglycoside 3'-phosphotransferase. kan is derived from the Tn5 transposon. Expression of the phosphotransferase permits direct selection of transformed cells by their resistance to the antibiotic G-418. pAG60 is incapable of transforming D. discoideum but is made transformation proficient by cloning D. discoideum sequences into the tetracycline resistance gene. The majority of transformed cells grow and develop normally and differentiate to give G-418-resistant spores. These transformants are unstable and rapidly lose their G-418-resistance during growth in the absence of antibiotic selection. Southern blots show that these unstable G-418-resistant transformants carry the pBR322 and kan sequences of pAG60. The pAG60-D. discoideum recombinant plasmids used for transformation were constructed in a way that might make them mutagenic. We have isolated several developmental mutants after transformation of D. discoideum with libraries of pAG60-D. discoideum recombinant plasmids. These mutants are G-418 resistant and carry pAG60 in their nuclear DNA. We recovered a pAG60-D. discoideum recombinant plasmid from several developmental mutants. This plasmid transforms D. discoideum at an elevated frequency and integrates into the nuclear genome. We speculate that integration can result in insertional inactivation of genes that are essential for differentiation but not for growth. Mutagenic transformation occurred only if the transforming plasmid had homology with D. discoideum nuclear DNA. A mammalian cell transformation vector, pSV2-neo, carried no D. discoideum sequences and was able to transform. However, pSV2-neo transformation was not mutagenic. These results suggest that direct inactivation and recovery of genes that are essential for differentiation of D. discoideum will be possible.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3