High-frequency conversion to a "fluffy" developmental phenotype in Aspergillus spp. by 5-azacytidine treatment: evidence for involvement of a single nuclear gene.

Author:

Tamame M,Antequera F,Villanueva J R,Santos T

Abstract

Transient exposure of mycelia from Aspergillus niger and Aspergillus nidulans to the cytidine analog 5-azacytidine, leading to no more than 0.3 to 0.5% substitution for cytosine by 5-azacytosine in A. nidulans DNA, resulted in the conversion of a high fraction of the cell population (more than 20%) to a mitotically and meiotically stable "fluffy" developmental phenotype. The phenotypic variants are characterized by the developmentally timed production of a profuse fluffy network of undifferentiated aerial hyphae that seem to escape signals governing vegetative growth. Genetic analysis with six different fluffy clones reveals that this trait is not cytoplasmically coded, is recessive in heterozygous diploids but codominant in heterokaryons, and exhibits a 1:1 Mendelian segregation pattern upon sexual sporulation of heterozygous diploids. Complementation and mitotic haploidization studies indicated that all variants are affected in the same gene, which can be tentatively located on chromosome VIII of A. nidulans. Molecular analysis to search for modified bases showed that DNA methylation is negligible in in both A. niger and A. nidulans and that no differences could be detected among DNAs from wild-type cells, fluffy clones, or mycelia exposed to 5-azacytidine. It thus appears that high-frequency conversion of fungal mycelia to a stable, variant developmental phenotype by 5-azacytidine is the result of some kind of target action on a single nuclear gene and that this conversion can occur in organisms virtually devoid of DNA methylation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3