Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors.

Author:

Watanabe S,Temin H M

Abstract

We wished to construct cell lines that supply the gene products of gag, pol, and env for the growth of replication-defective reticuloendotheliosis retrovirus vectors without production of the helper virus. To do this, first we located by S1 mapping the donor and acceptor splice sites of reticuloendotheliosis virus strain A. The donor splice site is ca. 850 base pairs from the 5' end of proviral DNA. It is close to or overlaps the encapsidation sequences for viral RNA. The splice acceptor site is ca. 5.6 kilobase pairs from the 5' end of proviral DNA. Therefore, the encapsidation sequences and the donor splice site were removed from viral DNA to give expression of the gag and pol genes without virus production. The promoter in the long terminal repeat was fused to a site near the first ATG codon of the env gene, thereby deleting the encapsidation sequences and the gag and pol genes to give expression of the env gene without virus production. The permissive canine cell line D17 was transfected with the two modified viral DNAs. Two cell clones that contain both modified viral DNAs support the production of replication-defective spleen necrosis virus-thymidine kinase recombinant retrovirus vectors without the production of helper virus. To prevent recombination, the vector contains deletions that overlap with deletions in the integrated helper virus DNAs. This helper cell-vector system will be useful to derive infectious recombinant virus stocks of high titer (over 10(5) thymidine kinase transforming units per ml) which are able to infect avian, rat, and dog cells without the aid of helper virus.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3