Mode of Action of Quindoxin and Substituted Quinoxaline-di- N -Oxides on Escherichia coli

Author:

Suter W.1,Rosselet A.1,Knüsel F.1

Affiliation:

1. Research and Development Biology, Department Biotechnique, Agrochemical Division, CIBA-GEIGY Ltd., Basel, Switzerland

Abstract

The effect of quindoxin on the synthesis of deoxyribonucleic acid (DNA), ribonucleic acid, and protein in Escherichia coli KL 399 was examined under aerobic and anaerobic conditions. In the absence of oxygen the synthesis of DNA was completely inhibited by 10 ppm of quindoxin, whereas the syntheses of ribonucleic acid and protein were not affected. Quinoxalin-di- N -oxides (QdNO) induce degradation of DNA in both proliferating and non-proliferating cells. polA, recA, recB, recC, exrA , and uvrA mutants were more susceptible than the corresponding repair-proficient strains. All strains were more resistant in the presence of oxygen. Quindoxin was reduced to quinoxalin- N -oxide by intact E. coli cells or by a cell-free E. coli extract. Electron spin resonance measurements demonstrated the generation of free radicals during the reduction of quindoxin. Oxygen or deficiency of energy sources impaired the antibiotic activity and the reduction of QdNO. The QdNO reductase activity was demonstrated to be lower in QdNO-resistant mutants than in the susceptible parent strain. Based on these results it is concluded that an intermediate of reduction, probably a free radical, is responsible for the lethal effect of quindoxin. With three independent techniques no evidence has been found for binding of quindoxin to DNA.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3