Possible mechanism of mannose inhibition of sucrose-supported growth in N2-fixing Azotobacter vinelandii

Author:

Wong T Y1

Affiliation:

1. Department of Biology, Memphis State University, Tennesee 38152.

Abstract

When mannose was added to a sucrose-supported culture of Azotobacter vinelandii under N2-fixing conditions, cell growth was inhibited. The degree of inhibition was proportional to the amount of mannose and to the aeration rate (T.-Y. Wong, Appl. Environ. Microbiol. 54:473-475, 1988). In this report, we demonstrate that once inside the cell, mannose was phosphorylated to mannose 6-phosphate. It was then isomerized to fructose 6-phosphate and to glucose 6-phosphate. Mannose inhibited sucrose uptake noncompetitively. The decrease in sucrose uptake after mannose addition coincided with a lower rate of respiration and a decrease in nitrogenase activity. The decrease in sucrose uptake and in the ATP pool may decrease the electron flow and reduce protection of the nitrogenase from O2. Cells became very sensitive to O2, and therefore, cell growth was inhibited under high aeration conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference19 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protein Mis-Termination Initiates Genetic Diseases, Cancers, and Restricts Bacterial Genome Expansion;Journal of Environmental Science and Health, Part C;2015-06-18

2. The "oxygen paradox" of dinitrogen-fixing bacteria;Biology and Fertility of Soils;2000-03-03

3. The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii;Applied and Environmental Microbiology;1994-06

4. Sucrose transport and hydrolysis inRhizobium tropici;Plant and Soil;1994-04

5. Sucrose transport and hydrolysis in Rhizobium tropici;Symbiotic Nitrogen Fixation;1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3