Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions

Author:

Eaton R W1,Chapman P J1

Affiliation:

1. Environmental Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561.

Abstract

The reactions involved in the bacterial metabolism of naphthalene to salicylate have been reinvestigated by using recombinant bacteria carrying genes cloned from plasmid NAH7. When intact cells of Pseudomonas aeruginosa PAO1 carrying DNA fragments encoding the first three enzymes of the pathway were incubated with naphthalene, they formed products of the dioxygenase-catalyzed ring cleavage of 1,2-dihydroxynaphthalene. These products were separated by chromatography on Sephadex G-25 and were identified by 1H and 13C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry as 2-hydroxychromene-2-carboxylate (HCCA) and trans-o-hydroxybenzylidenepyruvate (tHBPA). HCCA was detected as the first reaction product in these incubation mixtures by its characteristic UV spectrum, which slowly changed to a spectrum indicative of an equilibrium mixture of HCCA and tHBPA. Isomerization of either purified product occurred slowly and spontaneously to give an equilibrium mixture of essentially the same composition. tHBPA is also formed from HCCA by the action of an isomerase enzyme encoded by plasmid NAH7. The gene encoding this enzyme, nahD, was cloned on a 1.95-kb KpnI-BglII fragment. Extracts of Escherichia coli JM109 carrying this fragment catalyzed the rapid equilibration of HCCA and tHBPA. Metabolism of tHBPA to salicylaldehyde by hydration and aldol cleavage is catalyzed by a single enzyme encoded by a 1-kb MluI-StuI restriction fragment. A mechanism for the hydratase-aldolase-catalyzed reaction is proposed. The salicylaldehyde dehydrogenase gene, nahF, was cloned on a 2.75-kb BamHI fragment which also carries the naphthalene dihydrodiol dehydrogenase gene, nahB. On the basis of the identification of the enzymes encoded by various clones, the gene order for the nah operon was shown to be p, A, B, F, C, E, D.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3