Cell-dependent efficiency of reiterated nuclear signals in a mutant simian virus 40 oncoprotein targeted to the nucleus.

Author:

Fischer-Fantuzzi L,Vesco C

Abstract

We investigated the requisites for, and functional consequences of, the relocation to the nucleus of a transforming nonkaryophilic mutant of the simian virus 40 large T antigen (a natural deletion mutant lacking an internal large-T-antigen domain that includes the signal for nuclear transport). Synthetic oligonucleotides were used to obtain gene variants with one or more copies of the signal-specifying sequence inserted near the gene 3' end, in a region dispensable for the main large-T-antigen functions. The analysis of stable transfectant populations showed that mouse NIH 3T3 cells, rat embryo fibroblasts, and simian CS cells (a subclone of CV1 cells) differed considerably in their ability to localize some variant molecules into the nucleus. CS cells were always the most efficient, and NIH 3T3 cells were the least efficient. The nuclear localization improved either with reiteration of the signal or with a left-flank modification of the signal amino acid context. Three signals appeared to be necessary and sufficient, even in NIH 3T3 cells, to obtain a nuclear accumulation comparable to that of wild-type simian virus 40 large T antigen; other signal-cell combinations caused a large variability in subcellular localization among cells of the same population, as if the nuclear uptake of some molecules depended on individual cell states. The effect of the modified location on the competence of the protein to alter cell growth was examined by comparing the activity of variants containing either the normal signal or a signal with a mutation (corresponding to large-T-antigen amino acid 128) that prevented nuclear transport. It was found that the nuclear variant was slightly more active than the cytoplasmic variants in rat embryo fibroblasts and NIH 3T3 cells and was notably less active in CS cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3