Affiliation:
1. Department of Biology and Biotechnology, Life Sciences and Bioengineering Center at Gateway Park, Worcester Polytechnic Institute, Worcester, Massachusetts 01605
Abstract
ABSTRACT
Treatment of systemic fungal infections is difficult because of the limited number of antimycotic drugs available. Thus, there is an immediate need for simple and innovative systems to assay the contribution of individual genes to fungal pathogenesis. We have developed a pathogenesis assay using
Caenorhabditis elegans
, an established model host, with
Saccharomyces cerevisiae
as the invading fungus. We have found that yeast infects nematodes, causing disease and death. Our data indicate that the host produces reactive oxygen species (ROS) in response to fungal infection. Yeast mutants
sod1
Δ and
yap1
Δ, which cannot withstand ROS, fail to cause disease, except in
bli-3
worms, which carry a mutation in a dual oxidase gene. Chemical inhibition of the NADPH oxidase activity abolishes ROS production in worms exposed to yeast. This pathogenesis assay is useful for conducting systematic, whole-genome screens to identify fungal virulence factors as alternative targets for drug development and exploration of host responses to fungal infections.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献