Identification and Characterization of a New 7-Aminocephalosporanic Acid Deacetylase from Thermophilic Bacterium Alicyclobacillus tengchongensis

Author:

Ding Jun-Mei1,Yu Ting-Ting1,Han Nan-Yu1,Yu Jia-Lin1,Li Jun-Jun1,Yang Yun-Juan1,Tang Xiang-Hua1,Xu Bo1,Zhou Jun-Pei1,Tang Hong-Zhi2,Huang Zun-Xi1

Affiliation:

1. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, China

2. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

Abstract

ABSTRACT Deacetylation of 7-aminocephalosporanic acid (7-ACA) at position C-3 provides valuable starting material for producing semisynthetic β-lactam antibiotics. However, few enzymes have been characterized in this process before now. Comparative analysis of the genome of the thermophilic bacterium Alicyclobacillus tengchongensis revealed a hypothetical protein (EstD1) with typical esterase features. The EstD1 protein was functionally cloned, expressed, and purified from Escherichia coli BL21(DE3). It indeed displayed esterase activity, with optimal activity at around 65°C and pH 8.5, with a preference for esters with short-chain acyl esters (C 2 to C 4 ). Sequence alignment revealed that EstD1 is an SGNH hydrolase with the putative catalytic triad Ser15, Asp191, and His194, which belongs to carbohydrate esterase family 12. EstD1 can hydrolyze acetate at the C-3 position of 7-aminocephalosporanic acid (7-ACA) to form deacetyl-7-ACA, which is an important starting material for producing semisynthetic β-lactam antibiotics. EstD1 retained more than 50% of its initial activity when incubated at pH values ranging from 4 to 11 at 65°C for 1 h. To the best of our knowledge, this enzyme is a new SGNH hydrolase identified from thermophiles that is able to hydrolyze 7-ACA. IMPORTANCE Deacetyl cephalosporins are highly valuable building blocks for the industrial production of various kinds of semisynthetic β-lactam antibiotics. These compounds are derived mainly from 7-ACA, which is obtained by chemical or enzymatic processes from cephalosporin C. Enzymatic transformation of 7-ACA is the main method because of the adverse effects chemical deacylation brought to the environment. SGNH hydrolases are widely distributed in plants. However, the tools for identifying and characterizing SGNH hydrolases from bacteria, especially from thermophiles, are rather limited. Here, our work demonstrates that EstD1 belongs to the SGNH family and can hydrolyze acetate at the C-3 position of 7-ACA. Moreover, this study can enrich our understanding of the functions of these enzymes from this family.

Funder

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3