Purification and Characterization of a Cytotoxic Exolipid of Burkholderia pseudomallei

Author:

Häußler S.1,Nimtz M.2,Domke T.2,Wray V.2,Steinmetz I.1

Affiliation:

1. Institute of Medical Microbiology, Hannover Medical School, 30625 Hannover,1 and

2. Department of Molecular Structure Research, Gesellschaft für Biotechnologische Forschung mbH, 38124 Braunschweig,2 Germany

Abstract

ABSTRACT Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease, which is increasingly recognized as an important public health problem in various tropical regions. This study describes the identification and characterization of a heat-stable extracellular toxin of B. pseudomallei . After cultivation of B. pseudomallei in liquid media, the heated cell-free supernatant was concentrated by ultrafiltration. The concentrate exhibited a cytotoxic and hemolytic activity which showed remarkable resistance against alkaline and acidic treatments. For further purification, reversed-phase chromatography using a fast-performance liquid chromatography system was performed. After elution with an acetonitrile gradient, a single cytotoxic and hemolytic peak was detected. Structural characterization of the toxin was performed by a combination of mass spectrometric and nuclear magnetic resonance spectroscopic techniques. A highly purified glycolipid, 2- O -α- l -rhamnopyranosyl-α- l -rhamnopyranosyl-β-hydroxytetradecanoyl-β-hydroxytetradecanoate (Rha-Rha-C 14 -C 14 ), with a molecular mass of 762 Da was identified. The purified exolipid showed a time- and dose-dependent cytotoxic effect on phagocytic (HL60) and nonphagocytic (HeLa) cell lines. In addition, a time- and dose-dependent hemolysis of erythrocytes from various species was observed. The toxin structure makes a detergentlike action most probable. Interestingly, the cytotoxic and hemolytic activities of the glycolipid could be neutralized by albumin. Future studies will concentrate on the role of this exolipid as a virulence factor in the pathogenesis of melioidosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3