Signal Transduction Pathways Involved in Enterohemorrhagic Escherichia coli -Induced Alterations in T84 Epithelial Permeability

Author:

Philpott Dana J.123,McKay Derek M.,Mak Walter4,Perdue Mary H.,Sherman Philip M.412

Affiliation:

1. Pediatrics1 and

2. Molecular and Medical Genetics,2 University of Toronto, Toronto, and

3. Intestinal Disease Research Programme, McMaster University, Hamilton,3 Ontario, Canada

4. Division of Gastroenterology and Nutrition, Research Institute, The Hospital for Sick Children,4 and Departments of

Abstract

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) infection is associated with watery diarrhea and can lead to complications, including hemorrhagic colitis and the hemolytic-uremic syndrome. The mechanisms by which these organisms produce diarrheal disease remain to be elucidated. Changes in T84 epithelial cell electrophysiology were examined following EHEC infection. T84 cell monolayers infected with EHEC O157:H7 displayed a time-dependent decrease in transepithelial resistance. Increases in the transepithelial flux of both [ 3 H]mannitol and 51 Cr-EDTA accompanied the EHEC-induced decreases in T84 resistance. Altered barrier function induced by EHEC occurred at the level of the tight junction since immunofluorescent staining of the tight-junction-associated protein ZO-1 was disrupted when examined by confocal microscopy. Decreased resistance induced by EHEC involved a protein kinase C (PKC)-dependent pathway as the highly specific PKC inhibitor, CGP41251, abrogated the EHEC-induced drop in resistance. PKC activity was also increased in T84 cells infected with EHEC. Calmodulin and myosin light chain kinase played a role in EHEC-induced resistance changes as inhibition of these effector molecules partially reversed the effects of EHEC on barrier function. These studies demonstrate that intracellular signal transduction pathways activated following EHEC infection link the increases in T84 epithelial permeability induced by this pathogen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3