Human Immunodeficiency Virus Type 1 Vpr-Mediated G 2 Arrest Requires Rad17 and Hus1 and Induces Nuclear BRCA1 and γ-H2AX Focus Formation

Author:

Zimmerman Erik S.1,Chen Junjie2,Andersen Joshua L.1,Ardon Orly1,DeHart Jason L.1,Blackett Jana1,Choudhary Shailesh K.3,Camerini David3,Nghiem Paul4,Planelles Vicente1

Affiliation:

1. Division of Cellular Biology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah

2. Division of Oncology Research, Mayo Clinic, Rochester, Minnesota

3. Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California

4. Cutaneous Biology Research Center, Harvard Medical School, Charlestown, Massachusetts

Abstract

ABSTRACT Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G 2 phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G 2 arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G 2 arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4 + -lymphocyte cell cycle and apoptosis induction in the progressive CD4 + -lymphocyte depletion characteristic of HIV-1 pathogenesis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3