Affiliation:
1. Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
Abstract
ABSTRACT
La protein binds precursors to 5S rRNA, tRNAs, and other transcripts that contain 3′ UUU-OH and also promotes their maturation in the nucleus. Separate from this function, human La has been shown to positively modulate the translation of mRNAs that contain complex 5′ regulatory motifs that direct internal initiation of translation. Nonphosphorylated La (npLa) inhibits pre-tRNA processing, while phosphorylation of human La serine-366 (S
366
) promotes pre-tRNA processing. npLa was found specifically associated with a class of mRNAs that have unusually short 5′ untranslated regions comprised of terminal oligopyrimidine (5′TOP) tracts and that encode ribosomal proteins and translation elongation factors. Although La S
366
represents a CK2 phosphorylation site, there was no evidence that CK2 phosphorylates it in vivo. We used the CK2-specific inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), and antisense-mediated knockdown to demonstrate that CK2 is responsible for La S
366
phosphorylation in vivo. Hypophosphorylation was not associated with significant change in total La levels or proteolytic cleavage. Quantitative reverse transcription-PCR revealed increased association of the 5′TOP-mRNA encoding ribosomal protein L37 (rpL37) with La after TBB treatment. Transfection revealed more rpL37 mRNA associated with nonphosphorylatable La A
366
than with La S
366
, concomitant with La A
366
-specific shift of a fraction of L37 mRNA off polysomes. The data indicate that CK2 phosphorylates La S
366
in vivo, that this limits 5′TOP mRNA binding, and that increasing npLa leads to greater association with potentially negative effects on TOP mRNA translation. Consistent with data that indicate that phosphorylation reverses negative effects of npLa on tRNA production, the present data suggest that CK2 phosphorylation of La can affect production of the translational machinery.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference58 articles.
1. Ahmed, K., D. A. Gerber, and C. Cochet. 2002. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 12 : 226-230.
2. Alfano, C., D. Sanfelice, J. Babon, G. Kelly, A. Jacks, S. Curry, and M. R. Conte. 2004. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat. Struct. Mol. Biol. 14 : 7-12.
3. Ali, N., G. J. Pruijn, D. J. Kenan, J. D. Keene, and A. Siddiqui. 2000. Human La antigen is required for the hepatitis C virus internal ribosome entry site (IRES)-mediated translation. J. Biol. Chem. 275 : 27531-27540.
4. Ayukawa, K., S. Taniguchi, J. Masumoto, S. Hashimoto, H. Sarvotham, A. Hara, T. Aoyama, and J. Sagara. 2000. La autoantigen is cleaved in the COOH terminus and loses the nuclear localization signal during apoptosis. J. Biol. Chem. 275 : 34465-34470.
5. Battistutta, R., E. De Moliner, S. Sarno, G. Zanotti, and L. A. Pinna. 2001. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 10 : 2200-2206.