Stimulus-Coupled Spatial Restriction of Extracellular Signal-Regulated Kinase 1/2 Activity Contributes to the Specificity of Signal-Response Pathways

Author:

Whitehurst Angelique1,Cobb Melanie H.1,White Michael A.2

Affiliation:

1. Pharmacology

2. Cell Biology, UT Southwestern Medical Center, Dallas, Texas

Abstract

ABSTRACT Current understanding of cell regulatory systems suggests a diverse array of extracellular stimuli commonly recruit a limited cadre of core signal transduction modules to drive discrete stimulus-specific responses. One such module is the Raf-MEK-extracellular signal-regulated kinase (ERK) kinase cascade. Little information exists about how this pathway can be appropriately coupled to discrete cell biological processes. Contributing factors may include regulation of the duration, amplitude, and/or subcellular compartmentalization of active ERK1/2. To define properties of ERK1/2 that may help mediate stimulus-selective signal propagation, we have examined the dynamic behavior of native ERK1/2 activation at the single-cell level. In primary human cell cultures, ERK1/2 activation is not an all-or-none response. Instead, the amount of active ERK1/2 in individual cells accumulated in proportion to the concentration of external stimulus. The variable degree of ERK1/2 activation correlated well with the degree of ERK1/2 effector activation. Therefore, the relative amplitude of ERK1/2 activation within a cell can be modulated and may contribute to the generation of stimulus-specific biological responses. Importantly, we also found that the capacity of active ERK1/2 to accumulate in the nucleus and drive immediate-early gene expression is dependent upon the nature of the inductive signal, but independent of the amplitude of ERK1/2 activation. Therefore, nuclear accumulation of active ERK1/2 is a discrete regulated step that can direct the function of the kinase in response to specific stimuli.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3