Affiliation:
1. Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
Abstract
ABSTRACT
The mPER1 and mPER2 proteins have important roles in the circadian clock mechanism, whereas mPER3 is expendable. Here we examine the posttranslational regulation of mPER3 in vivo in mouse liver and compare it to the other mPER proteins to define the salient features required for clock function. Like mPER1 and mPER2, mPER3 is phosphorylated, changes cellular location, and interacts with other clock proteins in a time-dependent manner. Consistent with behavioral data from
mPer2/3
and
mPer1/3
double-mutant mice, either mPER1 or mPER2 alone can sustain rhythmic posttranslational events. However, mPER3 is unable to sustain molecular rhythmicity in
mPer1/2
double-mutant mice. Indeed, mPER3 is always cytoplasmic and is not phosphorylated in the livers of
mPer1
-deficient mice, suggesting that mPER3 is regulated by mPER1 at a posttranslational level. In vitro studies with chimeric proteins suggest that the inability of mPER3 to support circadian clock function results in part from lack of direct and stable interaction with casein kinase Iε (CKIε). We thus propose that the CKIε-binding domain is critical not only for mPER phosphorylation but also for a functioning circadian clock.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献