Characterization of the Minimal Replicon of a Cryptic Deinococcus radiodurans SARK Plasmid and Development of Versatile Escherichia coli-D. radiodurans Shuttle Vectors

Author:

Meima Rob1,Lidstrom Mary E.12

Affiliation:

1. Departments of Chemical Engineering1 and

2. Microbiology,2 University of Washington, Seattle, Washington 98195-1750

Abstract

ABSTRACT The nucleotide sequence of a 12-kb fragment of the cryptic Deinococcus radiodurans SARK plasmid pUE10 was determined, in order to direct the development of small, versatile cloning systems for Deinococcus . Annotation of the sequence revealed 12 possible open reading frames. Among these are the repU and resU genes, the predicted products of which share similarity with replication proteins and site-specific resolvases, respectively. The products of both genes were demonstrated using an overexpression system in Escherichia coli . RepU was found to be required for replication, and ResU was found to be required for stable maintenance of pUE10 derivatives. Gel shift analysis using purified His-tagged RepU identified putative binding sites and suggested that RepU may be involved in both replication initiation and autoregulation of repU expression. In addition, a gene encoding a possible antirestriction protein was found, which was shown to be required for high transformation frequencies. The arrangement of the replication region and putative replication genes for this plasmid from D. radiodurans strain SARK is similar to that for plasmids found in Thermus but not to that for the 45.7-kb plasmid found in D. radiodurans strain R1. The minimal region required for autonomous replication in D. radiodurans was determined by sequential deletion of segments from the 12-kb fragment. The resulting minimal replicon, which consists of approximately 2.6 kb, was used for the construction of a shuttle vector for E. coli and D. radiodurans . This vector, pRAD1, is a convenient general-purpose cloning vector. In addition, pRAD1 was used to generate a promoter probe vector, and a plasmid containing lacZ and a Deinococcus promoter was shown to efficiently express LacZ.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3