Binding and internalization of the Helicobacter pylori vacuolating cytotoxin by epithelial cells

Author:

Garner J A1,Cover T L1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2605, USA.

Abstract

Many Helicobacter pylori strains produce a cytotoxin (VacA) that induces vacuolation in epithelial cells. In this study, binding and internalization of the cytotoxin by HeLa or AGS (human gastric adenocarcinoma) cells were characterized by indirect fluorescence microscopy. Cells incubated with the cytotoxin at 4 degrees C displayed a uniform fluorescent plasma membrane signal. Preincubation of the cytotoxin with either rabbit antiserum to approximately 90-kDa H. pylori VacA or sera from H. pylori-infected persons inhibited its binding to cells and blocked its capacity to induce cytoplasmic vacuolation. Recombinant VacA fragments (approximately 34 and approximately 58 kDa), corresponding to two proteolytic cleavage products of approximately 90-kDa VacA, each bound to the plasma membrane of HeLa cells. Antiserum reactive with the approximately 58-kDa VacA fragment inhibited the binding of native H. pylori cytotoxin to cells and inhibited cytotoxin activity, whereas antiserum to the approximately 34-kDa fragment had no effect. When incubated with cells at 37 degrees C for > or = 3 h, the H. pylori cytotoxin localized intracellularly in a perinuclear location but did not localize within cytotoxin-induced vacuoles. When cells with previously bound cytotoxin were incubated with anticytotoxin serum at 4 degrees C and then shifted to 37 degrees C, vacuolation was completely inhibited. Bound cytotoxin became inaccessible to the neutralizing effects of antiserum after 60 to 120 min of incubation with cells at 37 degrees C. These data suggest a model in which (i) VacA binds to cells primarily via amino acid sequences in its 58-kDa fragment, (ii) VacA internalization occurs slowly in a temperature-dependent process, and (iii) VacA interacts with an intracellular target.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3