Regulation of gonococcal sialyltransferase, lipooligosaccharide, and serum resistance by glucose, pyruvate, and lactate

Author:

McGee D J1,Rest R F1

Affiliation:

1. Department of Microbiology and Immunology, MCP-Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA.

Abstract

Strain F62 of Neisseria gonorrhoeae gonococci (GC) is sensitive to normal human serum unless CMP-N-acetylneuraminic acid (CMP-NANA) is present. NANA is transferred primarily to a 4.5-kDa lipooligosaccharide (LOS) structure by a GC sialyltransferase (Stase). We investigated LOS and Stase expression and serum resistance in strain F62 grown in different carbon sources and growth conditions. Pyruvate-grown GC expressed 1.9- to 5.6-fold more Stase activity than did glucose-grown GC, whereas lactate-grown GC generally expressed intermediate Stase activities. Broth-grown GC expressed two- to fourfold more Stase activity than did plate-grown GC in all carbon sources. Pyruvate- or lactate-grown GC expressed significantly more of the sialylateable 4.5-kDa LOS species than did glucose-grown GC. Anaerobically, the 4.5-kDa LOS species was expressed in greater quantity than the 4.9-kDa N-acetyl galactosamine-terminating species in all carbon sources. Pyruvate-grown GC also incorporated up to threefold more radiolabelled CMP-NANA onto the 4.5-kDa LOS species than did glucose-grown GC. In serum resistance studies, pyruvate-grown GC were 6.5- to 16.1-fold more serum resistant than glucose-grown GC at limiting CMP-NANA concentrations (1.56 to 12.50 microg/ml). Taken together, these results indicate that gonococcal expression of Stase activity is up-regulated by growth in pyruvate or lactate, which correlates with enhanced expression of the sialylateable 4.5-kDa LOS and, for growth in pyruvate, correlates with enhanced sialylation of gonococcal LOS and greater serum resistance. In different in vivo niches, gonococcal LOS sialylation, serum resistance, and interaction with host cells can be highly regulated.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neisseria gonorrhoeae physiology and pathogenesis;Advances in Microbial Physiology;2022

2. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics;Pathogens and Disease;2017-04-27

3. Neisseria gonorrhoeae (Gonorrhea);Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases;2015

4. Revisiting the host as a growth medium;Nature Reviews Microbiology;2008-08-04

5. Lactate Acquisition Promotes Successful Colonization of the Murine Genital Tract by Neisseria gonorrhoeae;Infection and Immunity;2007-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3