Variability in competitive fitness among environmental and clinical azole-resistant Aspergillus fumigatus isolates

Author:

Chen Shu1,Zhu Guoxing1,Lin Huiping2ORCID,Guo Jian2,Deng Shuwen3ORCID,Wu Wenjuan2,Goldman Gustavo H.4ORCID,Lu Ling1ORCID,Zhang Yuanwei1ORCID

Affiliation:

1. Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China

2. Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

3. The People’s Hospital of SND (Suzhou New District), Suzhou, China

4. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil

Abstract

ABSTRACT Azoles are the primary antifungal drugs used to treat infections caused by Aspergillus fumigatus . However, the emergence of azole resistance in A. fumigatus has become a global health concern despite the low proportion of resistant isolates in natural populations. In bacteria, antibiotic resistance incurs a fitness cost that renders strains less competitive in the absence of antibiotics. Consequently, fitness cost is a key determinant of the spread of resistant mutations. However, the cost of azole resistance and its underlying causes in A. fumigatus remain poorly understood. In this observation, we revealed that the 10 out of 15 screened azole-resistant isolates, which possessed the most common azole-targeted cyp51A mutations, particularly the presence of tandem repeats in the promoter region, exhibit fitness cost when competing with the susceptible isolates in azole-free environments. These results suggest that fitness cost may significantly influence the dynamics of azole resistance, which ultimately contributes to the low prevalence of azole-resistant A. fumigatus isolates in the environment and clinic. By constructing in situ cyp51A mutations in a parental azole-susceptible strain and reintroducing the wild-type cyp51A gene into the azole-resistant strains, we demonstrated that fitness cost is not directly dependent on cyp51A mutations but is instead associated with the evolution of variable mutations related to conidial germination or other unknown development-related processes. Importantly, our observations unexpectedly revealed that some azole-resistant isolates showed no detectable fitness cost, and some even exhibited significantly increased competitive fitness in azole-free environments, highlighting the potential risk associated with the prevalence of these isolates. IMPORTANCE Azole resistance in the human fungal pathogen Aspergillus fumigatus presents a global public health challenge. Understanding the epidemic trends and evolutionary patterns of azole resistance is critical to prevent and control the spread of azole-resistant isolates. The primary cause is the mutation of the drug target 14α-sterol-demethylase Cyp51A, yet its impact on competitive ability remains uncertain. Our competition assays revealed a diverse range of fitness outcomes for environmental and clinical cyp51A -mutated isolates. We have shown that this fitness cost is not reliant on cyp51A mutations but might be linked to unknown mutations induced by stress conditions. Among these isolates, the majority displayed fitness costs, while a few displayed enhanced competitive ability, which may have a potential risk of spread and the need to closely monitor these isolates. Our observation reveals the variation in fitness costs among azole-resistant isolates of A. fumigatus , highlighting the significant role of fitness cost in the spread of resistant strains.

Funder

MOST | National Natural Science Foundation of China

JST | Natural Science Foundation of Jiangsu Province

Natural Science Research of Jiangsu Higher Education Institutions of China

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

The National Institute of Science and Technology INCT Funvir

Joint Canada-Israel Health Research Program

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3