Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes

Author:

Allen Heather K.1,Looft Torey1,Bayles Darrell O.2,Humphrey Samuel1,Levine Uri Y.1,Alt David2,Stanton Thaddeus B.1

Affiliation:

1. Food Safety and Enteric Pathogens, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA

2. Genomics Research Units, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA

Abstract

ABSTRACT Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the “kill-the-winner” ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. IMPORTANCE This study advances our knowledge of the collateral effects of in-feed antibiotics at a time in which the widespread use of “growth-promoting” antibiotics in agriculture is under scrutiny. Using comparative metagenomics, we show that prophages are induced by in-feed antibiotics in swine fecal microbiomes and that antibiotic resistance genes were detected in most viromes. This suggests that in-feed antibiotics are contributing to phage-mediated gene transfer, potentially of antibiotic resistance genes, in the swine gut. Additionally, the so-called “kill-the-winner” model of phage-bacterium population dynamics has been shown in aquatic ecosystems but met with conflicting evidence in gut ecosystems. The data support the idea that swine fecal Streptococcus bacteria and their phages follow the kill-the-winner model. Understanding the role of phages in gut microbial ecology is an essential component of the antibiotic resistance problem and of developing potential mitigation strategies.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Reference53 articles.

1. Infectious Diseases Society of America . 14 July 2010. The Infectious Diseases Society of America’s (IDSDA) statement on antibiotic resistance: promoting judicious use of medically important antibiotics in animal agriculture. Testimony before the House Committee on Energy and Commerce Subcommittee on Health. House Committee on Energy and Commerce, Washington, DC. http://democrats.energycommerce.house.gov/documents/20100714/Johnson.Testimony.07.14.2010.pdf.

2. Center for Veterinary Medicine, Food and Drug Administration, US Department of Health and Human Services . 2010. The judicious use of medically important antimicrobial drugs in food-producing animals. Draft guidance no. 209. Center for Veterinary Medicine, Food and Drug Administration, US Department of Health and Human Services, Rockville, MD.

3. Effect of Abolishment of the Use of Antimicrobial Agents for Growth Promotion on Occurrence of Antimicrobial Resistance in Fecal Enterococci from Food Animals in Denmark

4. US Government Accountability Office . 2011. Antibiotic resistance: agencies have made limited progress addressing antibiotic use in animals. Report no. GAO-11-801. US Government Accountability Office, Washington, DC.

5. WHY AND HOW ANTIBIOTICS ARE USED IN SWINE PRODUCTION

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3