The Escherichia coli Protein YfeX Functions as a Porphyrinogen Oxidase, Not a Heme Dechelatase

Author:

Dailey Harry A.123,Septer Alecia N.2,Daugherty Lauren3,Thames Daniel1,Gerdes Svetlana4,Stabb Eric V.12,Dunn Anne K.5,Dailey Tamara A.123,Phillips John D.6

Affiliation:

1. Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA

2. Department of Microbiology, University of Georgia, Athens, Georgia, USA

3. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA

4. Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA

5. Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA

6. Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA

Abstract

ABSTRACT The protein YfeX from Escherichia coli has been proposed to be essential for the process of iron removal from heme by carrying out a dechelation of heme without cleavage of the porphyrin macrocycle. Since this proposed reaction is unique and would represent the first instance of the biological dechelation of heme, we undertook to characterize YfeX. Our data reveal that YfeX effectively decolorizes the dyes alizarin red and Cibacron blue F3GA and has peroxidase activity with pyrogallal but not guiacol. YfeX oxidizes protoporphyrinogen to protoporphyrin in vitro . However, we were unable to detect any dechelation of heme to free porphyrin with purified YfeX or in cellular extracts of E. coli overexpressing YfeX. Additionally, Vibrio fischeri , an organism that can utilize heme as an iron source when grown under iron limitation, is able to grow with heme as the sole source of iron when its YfeX homolog is absent. Plasmid-driven expression of YfeX in V. fischeri grown with heme did not result in accumulation of protoporphyrin. We propose that YfeX is a typical dye-decolorizing peroxidase (or DyP) and not a dechelatase. The protoporphyrin reported to accumulate when YfeX is overexpressed in E. coli likely arises from the intracellular oxidation of endogenously synthesized protoporphyrinogen and not from dechelation of exogenously supplied heme. Bioinformatic analysis of bacterial YfeX homologs does not identify any connection with iron acquisition but does suggest links to anaerobic-growth-related respiratory pathways. Additionally, some genes encoding homologs of YfeX have tight association with genes encoding a bacterial cytoplasmic encapsulating protein. IMPORTANCE Acquisition of iron from the host during infection is a limiting factor for growth and survival of pathogens. Host heme is the major source of iron in infections, and pathogenic bacteria have evolved complex mechanisms to acquire heme and abstract the iron from heme. Recently Létoffé et al. (Proc. Natl. Acad. Sci. U. S. A. 106:11719–11724, 2009) reported that the protein YfeX from E. coli is able to dechelate heme to remove iron and leave an intact tetrapyrrole. This is totally unlike any other described biological system for iron removal from heme and, thus, would represent a dramatically new feature with potentially profound implications for our understanding of bacterial pathogenesis. Given that this reaction has no precedent in biological systems, we characterized YfeX and a related protein. Our data clearly demonstrate that YfeX is not a dechelatase as reported but is a peroxidase that oxidizes endogenous porphyrinogens to porphyrins.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3