Virulence, Inflammatory Potential, and Adaptive Immunity Induced by Shigella flexneri msbB Mutants

Author:

Ranallo Ryan T.1,Kaminski Robert W.1,George Tonia1,Kordis Alexis A.1,Chen Qing1,Szabo Kathleen2,Venkatesan Malabi M.1

Affiliation:

1. Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910

2. Division of Diagnostic Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910

Abstract

ABSTRACT The ability of genetically detoxified lipopolysaccharide (LPS) to stimulate adaptive immune responses is an ongoing area of investigation with significant consequences for the development of safe and effective bacterial vaccines and adjuvants. One approach to genetic detoxification is the deletion of genes whose products modify LPS. The msbB1 and msbB2 genes, which encode late acyltransferases, were deleted in the Shigella flexneri 2a human challenge strain 2457T to evaluate the virulence, inflammatory potential, and acquired immunity induced by strains producing underacylated lipid A. Consistent with a reduced endotoxic potential, S. flexneri 2a msbB mutants were attenuated in an acute mouse pulmonary challenge model. Attenuation correlated with decreases in the production of proinflammatory cytokines and in chemokine release without significant changes in lung histopathology. The levels of specific proinflammatory cytokines (interleukin-1β [IL-1β], macrophage inflammatory protein 1α [MIP-1α], and tumor necrosis factor alpha [TNF-α]) were also significantly reduced after infection of mouse macrophages with either single or double msbB mutants. Surprisingly, the msbB double mutant displayed defects in the ability to invade, replicate, and spread within epithelial cells. Complementation restored these phenotypes, but the exact nature of the defects was not determined. Acquired immunity and protective efficacy were also assayed in the mouse lung model, using a vaccination-challenge study. Both humoral and cellular responses were generally robust in msbB -immunized mice and afforded significant protection from lethal challenge. These data suggest that the loss of either msbB gene reduces the endotoxicity of Shigella LPS but does not coincide with a reduction in protective immune responses.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3