Selective and rapid nuclear translocation of a c-Myc-containing complex after fertilization of Xenopus laevis eggs

Author:

Lemaitre J M1,Bocquet S1,Buckle R1,Mechali M1

Affiliation:

1. Unité d'Embryologie Moléculaire, Institut Jacques Monod, Paris, France.

Abstract

We report here unusual features of c-Myc specific to early embryonic development in Xenopus laevis, a period characterized by generalized transcriptional quiescence and rapid biphasic cell cycles. Two c-Myc protein forms, p61 and p64, are present in large amounts in the oocyte as well as during early development. In contrast, only p64 c-Myc is present in Xenopus somatic cells. p61 c-Myc is the direct translation product from both endogenous c-myc mRNAs and c-myc recombinant DNA. It is converted to the p64 c-Myc form after introduction into an egg extract, in the presence of phosphatase inhibitors. p61 and p64 belong to two distinct complexes localized in the cytoplasm of the oocyte. A 15S complex contains p64 c-Myc, and a 17.4S complex contains p61 c-Myc. Fertilization triggers the selective and total entry of only p64 c-Myc into the nucleus. This translocation occurs in a nonprogressive manner and is completed during the first cell cycles. This phenomenon results in an exceptionally high level of c-Myc in the nucleus, which returns to a somatic cell-like level only at the end of the blastulation period. During early development, when the entire embryonic genome is transcriptionally inactive, c-Myc does not exhibit a DNA binding activity with Max. Moreover, embryonic nuclei not only prevent the formation of c-Myc/Max complexes but also dissociate such preformed complexes. These peculiar aspects of c-Myc behavior suggest a function that could be linked to the rapid DNA replication cycles occurring during the early cell cycles rather than a function involving transcriptional activity.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3