Affiliation:
1. Department of Periodontics, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106
2. Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
3. Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut 06520
Abstract
ABSTRACT
Intra-amniotic infection and inflammation are major causes of preterm birth (PTB). However, intra-amniotic inflammation is often detected in the absence of infection. This may partly be due to the culturing methods employed in hospital laboratories, which are unable to detect the uncultivated species. In this study, intra-amniotic microbial infections associated with PTB were examined by both culture and 16S rRNA-based culture-independent methods and were corroborated by the presence of intra-amniotic inflammation. Amniotic fluid (AF) specimens from 46 pregnancies complicated by PTB and 16 asymptomatic women were analyzed. No bacterial DNA was amplified in AF collected from the asymptomatic women. Among the 46 samples associated with PTB, bacterial DNA was amplified from all (16/16) of the culture-positive samples and 17% (5/30) of the culture-negative samples. In the culture-positive group, additional species were detected in more than half (9/16) of the cases by PCR and clone analysis. Altogether, approximately two- thirds of the species detected by the culture-independent methods were not isolated by culture. They included both uncultivated and difficult-to-cultivate species, such as
Fusobacterium nucleatum
,
Leptotrichia
(
Sneathia
) spp., a
Bergeyella
sp., a
Peptostreptococcus
sp.,
Bacteroides
spp., and a species of the order
Clostridiales
. To examine intra-amniotic inflammation, an AF proteomic fingerprint (mass-restricted score) was determined by surface-enhanced laser desorption ionization-time-of-flight mass spectrometry. Inflammation was detected in all five samples which were culture negative but PCR positive. Women who were PCR positive more often had elevated interleukin-6 levels in their AF, histological chorioamnionitis, and funisitis and delivered neonates with early-onset neonatal sepsis. Previously unrecognized, uncultivated, or difficult-to-cultivate species may play a key role in the initiation of PTB.
Publisher
American Society for Microbiology
Reference54 articles.
1. ACOG Committee on Practice Bulletins—Obstetrics. 2007. ACOG Practice Bulletin No. 80: premature rupture of membranes. Clinical management guidelines for obstetrician-gynecologists. Obstet. Gynecol.109:1007-1019.
2. Barron, E. J., J. H. Jorgensen, M. L. Landry, and M. A. Pfaller. 2007. Bacteriology, p. 974. In P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry, and M. A. Pfaller (ed.), Manual of clinical microbiology, 9th ed. ASM Press, Washington, DC.
3. Bearfield, C., E. S. Davenport, V. Sivapathasundaram, and R. P. Allaker. 2002. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. Br. J. Obstet. Gynaecol.109:527-533.
4. 16S rRNA Gene Sequencing versus the API 20 NE System and the VITEK 2 ID-GNB Card for Identification of Nonfermenting Gram-Negative Bacteria in the Clinical Laboratory
5. Bowen, J. M., L. Chamley, J. A. Keelan, and M. D. Mitchell. 2002. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta23:257-273.
Cited by
282 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献