Regulation of c-myc mRNA stability in vitro by a labile destabilizer with an essential nucleic acid component.

Author:

Brewer G,Ross J

Abstract

The turnover rates of some mRNAs vary by an order of magnitude or more when cells change their growth pattern or differentiate. To identify regulatory factors that might be responsible for this variability, we investigated how cytosolic fractions affect mRNA decay in an in vitro system. A 130,000 X g supernatant (S130) from the cytosol of exponentially growing erythroleukemia cells contains a destabilizer that accelerates the decay of polysome-bound c-myc mRNA by eightfold or more compared with reactions lacking S130. The destabilizer is deficient in or absent from the S130 of cycloheximide-treated cells, indicating that it is labile or is repressed when translation is blocked. It is not a generic RNase, because it does not affect the turnover of delta-globin, gamma-globin, or histone mRNA and does not destabilize a major portion of polysomal polyadenylated mRNA. The destabilizer accelerates the turnover of the c-myc mRNA 3' region, as well as subsequent 3'-to-5' degradation of the mRNA body. It is inactivated in vitro by mild heating and by micrococcal nuclease, suggesting that it contains a nucleic acid component. c-myb mRNA is also destabilized in S130-supplemented in vitro reactions. These results imply that the stability of some mRNAs is regulated by cytosolic factors that are not associated with polysomes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3