lac Transcription in Escherichia coli cells treated with chloramphenicol

Author:

Graham M Y,Tal M,Schlessinger D

Abstract

When protein synthesis was blocked by chloramphenicol in vivo, transcription initiation of lac mRNA was severely inhibited. In a promoter mutant (L8-UV5) or in wild-type cells supplemented with adenosine 3',5'-phosphate (greater than or equal to 5 mM), nearly normal initiation could be achieved, and when the mRNA chains formed were extracted, they coded for the 5'-terminal alpha-peptide of the lacZ gene in vitro. However, even under such conditions, only a fraction of RNA polymerases proceeded to the end of the Z gene in the presence of chloramphenicol; as a consequence, a wide range of sizes of mRNA was produced, and very few transcripts were formed all the way to the natural termination site of the operon. In other words, premature transcription termination occurred in chloramphenicol-treated cells, as current models predict, but terminations occurred to variable extents at several intragenic sites and apparently at least one intergenic site. Termination at intragenic sites occurred far less in cells bearing a mutation in the transcription termination factor rho.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RNAP Promoter Search and Transcription Kinetics in Live E. coli Cells;The Journal of Physical Chemistry B;2023-04-25

2. RNAP promoter search and transcription kinetics in liveE. colicells;2023-01-03

3. The Decay of Bacterial Messenger RNA;Progress in Nucleic Acid Research and Molecular Biology;1996

4. Control of mRNA processing and decay in prokaryotes;Genetica;1994-06

5. Post-transcriptional control of gene expression: bacterial mRNA degradation;World Journal of Microbiology and Biotechnology;1993-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3